An aging-independent replicative lifespan in a symmetrically dividing eukaryote
نویسندگان
چکیده
The replicative lifespan (RLS) of a cell-defined as the number of cell divisions before death-has informed our understanding of the mechanisms of cellular aging. However, little is known about aging and longevity in symmetrically dividing eukaryotic cells because most prior studies have used budding yeast for RLS studies. Here, we describe a multiplexed fission yeast lifespan micro-dissector (multFYLM) and an associated image processing pipeline for performing high-throughput and automated single-cell micro-dissection. Using the multFYLM, we observe continuous replication of hundreds of individual fission yeast cells for over seventy-five generations. Surprisingly, cells die without the classic hallmarks of cellular aging, such as progressive changes in size, doubling time, or sibling health. Genetic perturbations and drugs can extend the RLS via an aging-independent mechanism. Using a quantitative model to analyze these results, we conclude that fission yeast does not age and that cellular aging and replicative lifespan can be uncoupled in a eukaryotic cell.
منابع مشابه
Acetic acid and acidification accelerate chronological and replicative aging in yeast
Budding yeast is a preeminent model organism in studies of cellular aging pathways that are conserved in eukaryotes, including humans. There are two primary ways to query the lifespan of this organism.1 if one asks how many times a cell can divide, the answer will be its replicative lifespan (RLS). if, on the other hand, one asks how long a cell can stay alive without dividing, the answer will ...
متن کاملChronological and replicative lifespan in yeast
Budding yeast is a preeminent model organism in studies of cellular aging pathways that are conserved in eukaryotes, including humans. There are two primary ways to query the lifespan of this organism.1 if one asks how many times a cell can divide, the answer will be its replicative lifespan (RLS). if, on the other hand, one asks how long a cell can stay alive without dividing, the answer will ...
متن کاملA role for protein phosphatase 4 in regulating non-homologous end-joining
Budding yeast is a preeminent model organism in studies of cellular aging pathways that are conserved in eukaryotes, including humans. There are two primary ways to query the lifespan of this organism.1 if one asks how many times a cell can divide, the answer will be its replicative lifespan (RLS). if, on the other hand, one asks how long a cell can stay alive without dividing, the answer will ...
متن کاملCyclin D1 goes metabolic
Budding yeast is a preeminent model organism in studies of cellular aging pathways that are conserved in eukaryotes, including humans. There are two primary ways to query the lifespan of this organism.1 if one asks how many times a cell can divide, the answer will be its replicative lifespan (RLS). if, on the other hand, one asks how long a cell can stay alive without dividing, the answer will ...
متن کاملStem cell population asymmetry can reduce rate of replicative aging.
Cycling tissues such as the intestinal epithelium, germ line, and hair follicles, require a constant flux of differentiated cells. These tissues are maintained by a population of stem cells, which generate differentiated progenies and self-renew. Asymmetric division of each stem cell into one stem cell and one differentiated cell can accomplish both tasks. However, in mammalian cycling tissues,...
متن کامل